

WORKSHOP:

FROM BASIC TO APPLIED RESEARCH TOWARDS DURABLE AND RELIABLE FUEL CELLS

Lucerne, Switzerland, 5 July 2022

Online THDA for rSOC diagnostic:

Illustration for reactants depletion

G. Hammerschmid^{1,2}, <u>H. Moussaoui^{1*}</u>, J. Van herle¹, V. Subotić²

hamza.moussaoui@epfl.ch

¹Group of Energy Materials, École Polytechnique Fédérale de Lausanne, Switzerland

²Institute of Thermal Engineering, Graz University of Technology, Austria

Contents

- 1. Introduction
- 2. Experimental Method
- 3. Modeling
- 4. Experimental Results
- 5. Model Validation and Results
- 6. Conclusion

Context

Introduction

Exp. method

Modeling

Exp. results

Model results

Conclusion

Main limitation of solid oxide cells:

- Durability insufficient for large-scale deployment
- Critical conditions cause premature failure or irreversible degradation

Solution:

- Early detection & identification of critical cond.
- Mitigation and recovery
- No irreversible degradation

Fig.1: Voltage evolution and possible degradation pathways under failure.

 $R_{f,ox}$

decreasing

mHz

Z' in Ω cm²

f in Hz

Electrochemical Impedance Spectroscopy (EIS)

Clean Hydrogen Partnership

Well established but still a **laboratory tool** (sophisticated to implement in a commercial context)

WORKSHOP "FROM BASIC TO APPLIED RESEARCH TOWARD DURABLE AND RELIABLE FUEL CELLS"

Eq. (1)

Total Harmonic Distortion (THD)

Fig.5: Schematic voltage response to a sinusoidal current signal in time and frequency domain from "Total harmonic distortion analysis of oxygen reduction reaction in proton exchange membrane fuel cells" (Mao and Krewer, 2013).

- Quantifies the **non-linearity** (no sinusoidal response)
- Deconvolution of response into **harmonics** (via Fourier transform)
- Hypothesis: Identification of critical conditions via frequency-specific distortion (compared to healthy, linear state)

- At const. operation, **THD index** dependent on:
 - frequency of excitation signal f₁
 - j_{AC}, U_{AC} amplitude of excitation signal
 - number of harmonics used n

Single Cell Setup and Test Rig

Fig.7: Photo of the experimental test rig.

Fig.6: Schematic representation of the single cell setup.

Clean Hydrogen Partnership

Fuel Starvation (SOFC)

Fuel Starvation (SOFC)

• R_{ohm} and high-frequency semicircle $\neq f(FU)$

ASTRA

Clean Hydrogen Partnership

- R_{pol} and low-frequency semicircle $\uparrow\uparrow$ as FU \uparrow
- For same FU, impedance ↑ for diluted fuel and low *j* than for H₂ rich fuel and high *j*

Fig.11: Nyquist plots of experiments on fuel starvation.

Fuel Starvation (SOFC)

- **Bode:** Low-frequency peak ↑ and shifts to lower frequencies as FU ↑
- **DRT:** Gas conversion peak P2 \uparrow and shifts from 10¹ to 10⁰ as FU \uparrow
- THD: THD ↑ the ↓ the frequency and ↑ FU, for f < 2 Hz THD above 1% threshold (healthy state) for FU > 80% max THD 9.3% at 87mHz for 93% FU

Fig.12: Bode, DRT, and THD plot of experiment 3 on fuel starvation.

2 Hz

Steam Starvation (SOE)

Steam Starvation (SOE)

Fig.15: EIS, DRT, and THD results of steam starvation at 1.35V, Amp = 50mV.

THD – Number of Harmonics

Fig.16: Evolution of THD index with harmonics used, normalized to highest THD(n_H = 5). Operating points from E1.3 (const. current 318 mA cm⁻² and Amp = 5%).

Model Validation

Fig.17: Simulation versus measurements a) fuel starvation, b) temperature, c) and d) air starvation, e) and f) humid fuel.

Simulation

Fig.18: Simulation for $H_2/N_2 = 30/70$, 150 Nml min⁻¹ fuel flow rate, $O_2/N_2 = 21/79$, 300 Nml min⁻¹ air flow rate, 750°C cell temperature, outward fuel flow.

EPFL

EFCF Presentation

by Gerald Hammerschmid On Friday 10:15

Conclusion

ntroduction

Exp. method

Modeling

Exp. results

Model results

Conclusion

Experimental

- Extensive characterization of reactants starvation in SOFC and SOE modes
- Tools: Polarization curve, EIS & DRT, and THD (each having advantages & drawbacks)

Modeling

• 2D steady-state model \rightarrow Large local disparities during critical conditions

Impact

- Understanding of critical conditions and how to detect them (novelty THD)
- Improve State-of-Health monitoring \rightarrow Prevent degradation \rightarrow Increase lifetime
- Use model to propose safe operating points free of local extremes
- Outlook
 - Accelerated Stress Tests
 - Other failure modes

- Stacks & systems
- Transient model

This work has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under grant agreement N° 101007175 (REACTT), 875047 (RUBY) and 825027 (AdAstra) and Hydro-Québec Research Institute (IREQ). This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program, Hydrogen Europe and Hydrogen Europe research.

Comparison of Tools

BACKUP **SLIDE**

	jV	EIS & DRT	THD
Information	Global performance/SoH No identification of individual processes	In-depth characterization Deconvolution of processes by time charact. Identification of criticalities and causes	Severity of monitored criticalities Limited to certain criticalities
Time	Fast (< 3min)	Slow (> 15min) to obtain sufficient spectrum	Fast (1-2min) to monitor relevant frequencies
System Availability	Interrupted	In steady-state mode OK In dynamic mode not possible	In steady-state mode OK In dynamic mode not possible
Main Purpose	Characterization	Characterization	Monitoring
Application	Commercial	Laboratory	Emerging Commercial
Reliability / Reprod.	Very Good	Good	Fairly Good
Equip. Requirements	Low	High	High(er)
Usability	Simple	Sophisticated	Sophisticated

BACKUP

SLIDE

Working Principle

Fig.3: Schematic representation of the working principle of a SOC in a) SOFC mode and b) SOE mode.

- Temperature: 600 1000°C
- Reactions: at triple-phase-boundary (TPB)
- Fuel flexibility: H₂, NH₃, CO, CH₄ ...
- Reversibility: fuel cell ↔ electrolyzer mode

- Dense, ceramic electrolyte: YSZ
- Porous electrodes
 - Fuel side: Ni-YSZ
 - Air side: LSM, LSM-YSZ, LSCF, LSCF-GDC

Causes for Failure and Degradation

- Causes for failure:
 - currenttemperaturevoltagegas composition

leakage load-cycles unpredicted shut-down defects in balance-of-plant (BoP) ...

BACKUP

SLIDE

Degradation: Deterioration of cell performance over time

Fuel Electrode:

- Ni-oxidation
- Ni-agglomeration
- Carbon deposition
- Poisoning: S, Cl, Si, Na, Al

- **Oxygen Electrode:**
 - Delamination of
 electrode/electrolyte interface
 - Secondary phases: SrZrO₃, Cr₂O₃
 - Cr evaporation

Electrolyte:

- Decomposition of YSZ
- Reduction of YSZ

- SCOPE
- Electrochemical Impedance Spectroscopy (EIS) and Distribution of Relaxation Times (DRT)
- Total Harmonic Distortion (THD)

2D, steady-state simulation model with MATLAB

Polarization Curve (jV)

Fig.2: Typical current-voltage (jV) characteristic known as polarization curve. (Note: Same temperature but different gas composition in each mode, therefore different Nernst voltage.) (STP: 25°C, 1.01325 bar)

Electrochemical Impedance Spectroscopy (EIS)

ASTRA

Clean Hydrogen Partnership

Fig.5: EIS method from "Fuel Cell Fundamentals" (O'Hayre et al., 2016).

Fig.6: Schematical representation of an impedance spectrum as Nyquist plot.

Test Rig

Fig.9: Photos of the experimental test rig.

Test Rig Modifications

Fig.9: Photos of the experimental test rig.

Design of Experiments

Tab.1: List of experiments.

No	Name	
1	Fuel Starvation	
1.1	Constant Voltage	
1.2	Constant Composition	
1.3	Constant Current	
2	THD Sensitivity	
2.1	Signal Amplitude	
2.2	Number of Harmonics	
3	Temperature	
4	Flow Direction	
5	Air Starvation	
5.1	Varying Air Composition	
5.2	Varying Air Flow Rate	
6	Steam Starvation	
	No 1 1.1 1.2 1.3 2 2.1 2.2 3 4 5 5.1 5.2 6	

Tab.2: Default experiment parameter values.

Default:

- 750°C
- outward fuel flow
- 150 Nml min⁻¹ fuel flow rate
- 300 Nml min⁻¹ air flow rate
- H₂/N₂/H₂O fuel composition
- $O_2/N_2 = 21/79$ air composition
- 4 mV s⁻¹ jV sweep rate
- EIS galvanostatic in SOFC mode
- EIS potentiostatic in SOE mode
- 50mHz lower frequency limit
- 100kHz upper frequency limit
- 12 steps per decade
- 12 measure periods
- THD of first five harmonics

Modeling

Fig.10: Computational domain based on the experimental setup.

- Segmentation:
 - Coaxial cylinders
 - Radial discretization such that all have same active area
- Species balance in the GDL:

 $\frac{1}{r}\frac{\partial}{\partial r}\left(rc_{i}^{r}v\right)=\frac{J_{i}}{\delta_{gdl}}$

Eq. (16)

Fig.11: Schematic illustration of a segment cross-section.

 Species balance in the Electrodes: Dusty Gas Model (DGM)

$$\sum_{\substack{j\\j\neq i}} \frac{c_j^{\zeta} J_i - c_i^{\zeta} J_j}{c^{\zeta} D_{ij}^e} + \frac{J_i}{D_{iK}^e} = -\frac{\partial c_i^{\zeta}}{\partial \zeta} - \frac{B_g c_i^{\zeta}}{\mu D_{iK}^e} \frac{\partial p}{\partial \zeta} \quad \text{Eq. (17)}$$

Solution Algorithm

WORKSHOP "FROM BASIC TO APPLIED RESEARCH TOWARD DURABLE AND RELIABLE FUEL CELLS"

THD – Excitation Signal Amplitude

Fig.15: THD plot for different excitation signal amplitudes. Two operating points from E1.3 (const. current at 318 mA cm⁻²).

- If amplitude small \rightarrow signal to noise ratio low and THD output corrupted by noise
- If amplitude high –

: ASTH

Clean Hydrogen Partnership

- → non-linear operation per se, high distortion not necessarily from critical condition but due to measurement setting
- Recommendation → approximately 5%

Temperature

- $\eta_{ohm} \uparrow and R_{ohm} \uparrow if T \downarrow$
- high-frequency semicircle ↑ if T ↓
- low-frequency semicircle \neq f(T)
- Charge transfer peaks P5 and P6 \uparrow if T \downarrow
- Gas conversion peak $P2 \neq f(T)$
- THD pattern similar

Fig.17: Comparison of 750 and 700°C cell temperature. jV curves of three compositions from E1.3 and EIS/THD measurements for four operating points from E1.2.

WORKSHOP "FROM BASIC TO APPLIED RESEARCH TOWARD DURABLE AND RELIABLE FUEL CELLS"

Flow Direction

BACKUP SLIDE

- OCV \downarrow and T \uparrow in inward flow
- $\eta_{conc} \uparrow \uparrow$ in inward flow
- EIS, DRT, THD results of
 48% inward ≈ 90% outward

Air Starvation

EPFL

Air Starvation

Fig.13: EIS, DRT, and THD results of air starvation E.1 with varying composition (O_2/N_2) at constant air flow rate of 300 Nml min⁻¹.

Steam Starvation

WORKSHOP "FROM BASIC TO APPLIED RESEARCH TOWARD DURABLE AND RELIABLE FUEL CELLS"

Model Parameter Fitting

- Ohmic resistance *R*_{ohm}
- Parasitic losses *j*_{leak}
- Exchange current density $j_{0,fu}^0$, $j_{0,ox}^0$
- Correction factor for concentration overpotential η_{conc}

Relative reactant depletion:

$$x_{i,dep} = rac{x_{i,\text{TPB}}}{\sqrt{x_{i,in}}}$$
 Eq. (21)

$$\begin{split} \eta_{conc,fu} &= \eta_{conc,fu} C_{Fuel} & j > 0 & \text{Eq. (22)} \\ &= \eta_{conc,fu} C_{Steam} & j < 0 & \text{Eq. (23)} \\ \eta_{conc,ox} &= \eta_{conc,ox} C_{Air} \left(\frac{300}{\dot{V}_{air}}\right) & j > 0 & \text{Eq. (24)} \end{split}$$

Fig.28: Fitting of a) ohmic resistance, b) parasitic losses, and c) correction factor for η_{conc}

BACKUP SLIDE