Dr. Habil. Aline Léon

European Institute for Energy Research by EDF and KIT

Degradation assessment in solid oxide cell operated in electrolysis mode.

Energy Transition

Transition from a high-performing carbon-based energy system:

to low carbon energy system and to *net-zero* energy system.

Transition enabler: early deployment of hydrogen produced from renewable electricity and water electrolysis

- Total planned electrolyzer capacity by 2030: 40 GW in Europe
 - » By expanding the actual renewable energy and water electrolyzer capacity (move to GW scale system)
 - » By industrializing the manufacturing process
 - » By reducing the (voltage) degradation rate over long-term operation of the cell, stack and system

3

From cell to system

HTEL - operation

What are the parameters to follow?

- Current density
 - » amount of hydrogen produced per cell area (kgH₂/cm²)

Cell voltage

- » the specific electric needs in kWh/Kg, so the efficiency
- » Performance V = f(I), durability V = f(t)

Degradation rate

- » Origin of the degradation
- » Impedance spectroscopy
- » Post-test analysis using imaging, scattering and spectroscopy techniques

Source: L. Barelli, G. Bidini and G. Cinti, ChemEngineering 1 (2017) 13

HTEL - Degradation rate

Definitions

- Deterioration of the cell performance over time according to a specific performance indicator
 - Voltage degradation (test performed at constant current); mV/kh
 - Area specific resistance degradation; $m\Omega \ cm^2/kh$
 - %/kh referring to the thermoneutral voltage
- $DR = \left| \frac{(U(i,t) U(i,t=0))}{U(i,t=0)} \right| \cdot \frac{1000}{t} \cdot 100\%$
 - Linear approach limited: changes in temperature, reactant/product composition not taken into account
 - Additional degradation to be added on the raw voltage degradation to estimate the real voltage degradation

HTEL - cell architecture

Cathode (Electrode) Supported cell

Electrolyte Supported cell (ESC)

Measured and extrapolated U-j curves for both type of cells

Source: J. Schefold et al., Electrochim. Acta 179 (2015) 161-168

6

HTEL - Degradation causes

Cell level

- Material properties (phase segregation, cation diffusion)
- Electrochemical processes (polarization resistance of the fuel and air electrode)
- Cell architecture, operating conditions
 - » Electrode supported cell: Ni depletion at high current density
 - » Electrolyte supported cell: ohmic resistance related partly to a ionic conductivity decrease of the electrolyte

Stack level

- Larger scale cell
 - » Current density, gas and steam flow distribution
 - » Temperature gradient
 - » Interconnect coating material, glass seal

Summary of the main degradation phenomena; source: McPhail et al. Electrochem. Sci. Adv.2021, doi.org/10.1002/elsa.202100024

- eirei

bv EDF and KI

HTEL - Degradation analysis

Types of Degradation

- Progressive linear degradation rate
- Chemical and /or electrochemical degradation
- Sudden incident or failure/malfunction of components; irreversible or with possible recovery
 - » Thermal cycling
 - » Current load
 - » Mechanical wearing
 - » Poisoning

Tools for tracing degradation

- Electrochemical characterization
- In-situ electrochemical impedance spectroscopy
- Ex-situ:
 - » Imaging
 - > Scanning electron microscopy SEM, STEM
 - > High-resolution transmission electron microscopy
 - > X-ray nanotomography (3D reconstruction)
 - » Scattering
 - > µ and nano-X-ray diffraction
 - » Spectroscopy
 - > µ and nano-X-ray fluorescence spectroscopy and X-ray absorption spectroscopy
 - > Ambient pressure X-ray photoelectron spectroscopy
 - Secondary ion-mass spectroscopy
 - > Raman Spectroscopy
- Electrochemical model

HTEL - Performance, Durability

Kerafol GmbH cell

- Cell operation at ElfER facilities
 - » ESC: Ni(GDC)/GDC/6Sc1CeSZ (130 µm)/GDC/LSCF
 - > 847 851 °C, FH = 75 vol.%, SC = 50%
 - > Operated for 20,100 hours @ -0.9 Acm⁻²
 - > Kerafol cell tested 23,000 hours in total
 - » Degradation rate ~ 7.4 mV/1000h @ 0.9 Acm⁻²
 - » Degradation is mainly ohmic with 7 m Ω cm²/1000h

Source: ElfER

Degradation – nanoscale analysis

2D Nano-XRF maps- oxygen electrode side

Reference

Source: J. Villanova et al., Journal of Power Sources 421 (2019) 100

Degradation -nanoscale analysis

XRF map - Concentration profile

• After sintering

- » LSCF/CGO/Sr/Ce/Sr/Gd/6Sc1CeSZ/Gd/Ce/CGO/Ni(CGO)
- » Sr is not the contact layer with the electrolyte but Gd

After operation

- » LSCF/CGO/Sr/Ce/Sr/Gd/6Sc1CeSZ/Gd/Ce/CGO/Ni(CGO)
- » Sr is not the contact layer with the electrolyte but Gd
- » Co in the diffusion barrier layer, in the electrolyte, layer at the interface of the electrolyte

HTEL – Stack Performance, Durability

30 cells based stack

Stack design ۲

- Ni-GDC/GDC/3YSZ/GDC/LSCF (Sunfire GmbH) **»**
- Rectangular shape single cell **»**
 - > active area is 127.9 cm^2
- Co-flow configuration for the gas flow **>>**
- Compression load of 1200 N **»**

Stack integration ٠

- Commercial test station **»**
 - > Horiba FuelCon GmbH
- Hotbox design for gas supply **»**
- Temperature of the stack controlled by the oven **>>**
- Steam **»**
 - from high-purity water >
 - direct-injection evaporator unit >

HTEL – Stack degradation

30 cells based stack

- Testing parameters close to real working conditions
 - » 90/10 vol.% H_2O/H_2 , steam conversion = 70%
- Degradation rate analysis
 - » Raw voltage degradation
 - > 3.5 mV/kh
 - » Temperature induced degradation
 - > Temperature voltage calibration: 3.5 mV/°C
 - > Temperature increase of 2°C/kh
 - » Temperature corrected degradation
 - > 10.5 mV/kh per cell
 - > Area specific resistance: 21 mΩ cm²/kh

Cell voltage and temperature evolution during the electrolysis test of a 30 cells based stack

230346

In-situ overpotential

Short-stack at high current density

- SOFC @ j = 0.2 A/cm²
- 2000 hours of SOEC @ j = -0.5 A/cm²
- 2000 hours of SOEC @ j = -0.5 A/cm²
- Incidences during testing are hindering the evaluation of the degradation
 - Current collector surface contact damaged
 - Evaporator maintenance
 - Water pump

In-situ overpotential

Short-stack at high current density

- ASR correction from temperature rise:
- > 3.5 mV/°C
- ~2000 hours of SOEC taken into account

	Voltage degradation (corrected), mV/kh/cell
Cluster 1	10.5
Cluster 2	10.8
Cluster 3	21.5
Cluster 4	15.6
Cluster 5	24.8
Average stack	16.6

Stack moved to high current density up to - 0.65 Acm⁻²

Summary and perspectives

Degradation assessment

Solid oxide system

- » Complex multiphase layers
- » Multiple degradation processes
- » Increased complexity when scaling up from cell to stack

Degradation assessment approached with multimodal techniques

- » Electrochemical characterization
- » In-situ electrochemical impedance spectroscopy
- » Ex-situ post-test microstructural analysis
- » Electrochemical models

Ad-Astra project

- Long-term testing combined with characterization
 - » Time consuming and costly
 - » Not always in relevant real operating conditions
- Introduction of accelerated stress tests (AST)
 - » Experimental evaluation of cell & stack at nominal and aggravated conditions
 - » Comparison to assess that induced degradation is similar
 - » Development of models

© All rights reserved. Unauthorized use or reproduction without authors consent is prohibited. Material presented at the Workshop jointly organized by H2020 Projects AD ASTRA and RUBY on 5th July 2022 - Lucerne (CH)

European Institute for Energy Research by EDF and KIT

Thank You

Dr. Habil. Aline Léon +49 (0) 721 6105 1489 aline.leon@eifer.org www.eifer.org

Federal Ministry for Economic Affairs and Energy