RUBY Project **RUBY** Robust and reliable general management tool for performance and durability improvement of fuel cell stationary units

ROBUST DIAGNOSIS OF PEMFC BASED ON ARTIFICIAL INTELLIGENCE AND EIS

DAMIEN CHANAL, NADIA YOUSFI-STEINER, DIDIER CHAMAGNE, MARIE-CÉCILE PERA

CONTACT : DAMIEN.CHANAL@FEMTO-ST.FR

Context

Diagnosis approach

Standardization methods

Validation of approach

Why diagnosing FCs ?

From the database to the classification algorithm

Overview of methods

Metrics & Results

Context

Diagnosis approach

Standardization methods Validation of approach

Why diagnosing FCs ?

From database to classification algorithm

Overview of methods

Metrics & Results

Lifetime of fuel cells

- DOE Objectives
 - 2020 : 40 000h Stationary / 5000h Vehicle
 - Ultimate: 80 000h / 8000h
- Tools :
 - Diagnosis \rightarrow Detection of degrading conditions
 - Prognosis \rightarrow Prediction of future performance

• Control \rightarrow Changes in operating conditions

Context

Diagnosis approach

Why diagnosing FCs ? From database to classification algorithm

Standardization methods Validation of approach

Overview of methods

Metrics & Results

Diagnostic approach

Why using diagnosis ?

- Determine the State of Health of a system
- Quickly detect any abnormal conditions
 - Operation to be done regularly
 - Plan maintenance operations

Operation :

- Model-based:
 - Equations and/or artificial intelligence
 - Relationship(s) between input(s) and output(s)
 - Calculation of residuals
- Non model-based:
 - Statistical analysis and artificial intelligence
 - Relationship(s) between known conditions and data

Diagnostic approach

European "Health Code" project

	Training of the algorithm	
Database		
		- - - - -

The key point of Machine Learning algorithms

- Clean data are needed to have powerfull algorithms
- Complexity of obtaining noiseless data on an industrial scale

Diagnostic approach – Databases

Databases:

- Composed by electrochemical impedance spectra (EIS)
- Two PEMFC technologies tested by 2 different laboratories
 - 5 7 conditions tested
 - Nominal conditions
 - Water management (+/-)
 - Reagent management (-)
 - Poisoning (CO and Sulfur)
 - More than 80 EIS per technology

(f) FC LAB

Diagnostic approach – Databases

© All rights reserved. Unauthorized use or reproduction without authors consent is prohibited. Material presented at the Workshop jointly organized by H2020 Projects AD ASTRA and RUBY on 5th July 2022 – Lucerne (CH)

Diagnostic approach – Databases

Diagnostic approach – Databases

Generate a Fault Detection & Identification (FDI) space to separate each fault

• Extraction based on physics knowledge and/or statistical test

Clean Hydrogen Partnership

Diagnostic approach - Feature extraction

(1) Min Magnitude ; (2) Max Magnitude; (3) Delta Magnitude, (4) Polarization resistance; (5) Max Phase
(6) Min Phase; (7) Phase at low frequency (~0.1) ; (8) Delta Phase,
(9 &10) Phase analysis: Phase = A. freq + B [1, 10] Hz

Representation of features extracted on Nyquist (left) & Bode (right) diagramns

UB

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

Clean Hydrogen Partnership

Optimisation of the FDI space

- Keeping only relevant information
- Too much: Overfitting \rightarrow Redundant information, computation time \nearrow
- Not enough: Underfitting \rightarrow Poor performances

Diagnostic approach - Feature selection

15

• <u>Filtering</u>

- Objective :
 - To limit redundant information
 - To reduce the feature space
- Process :
 - Measure of correlation between features (Pearson)
 - Variance to determine which one to delete
- <u>Ranking</u>
 - Objective :
 - To simplify the need for empirical testing
 - Basic process: testing all feature combinations
 - With ranking : adding features 1 by 1 until reaching the maximum accuracy.
 - Process :
 - Statistical test ANOVA F-Test
 - Measuring the relationship between the condition being tested and each feature

Diagnostic approach

Determining the condition associated with a known data to evaluate the performance

- Need for a low computational time algorithm
- To reduce user expertise for ease of use \rightarrow How much is the prediction correct ?
- To be able to adapt during operation

Diagnostic approach - Classification

Classification

- Use of fuzzy c-means clustering
 - Reduce the user expertise and add incertitude in the prediction of data
 - Non supervised algorithm
 - The class of each individual is unknown
 - Separates a database into X desired clusters
 - Determines the coordinates of the centers of each cluster
- Adaptation
 - Creation of groups for each condition tested
 - Level of faults
 - To know the condition associated with each center (but not the level)
 - To optimize positioning
 - To facilitate the classification of new points
- The case of CO poisoning
 - High intensity positive imaginary part

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

FC LAB

Context

Diagnosis approach

Standardization methods

Validation of approach

Why diagnosing FCs ?

From database to classification algorithm

Overview of methods

Metrics & Results

Principle of standardization

Main interest of standardization:

Scaling the data	Reduce computational time
Reduce the importance of outliers	Improve performances

RUB

Overview of methods

	<u>Type of</u> <u>transformation</u>	<u>Standardized</u> <u>data</u>	<u>Sensitive to</u> outliers	<u>Operation</u>	<u>Usefulness</u>	<u>Comments</u>
Normalizers	Normalizer	Samples	Yes	Divide the samples by their norm (L1, L2, inf).	Quantifies similarities between samples	-
Min-Max	Linear	Features	Yes	Features are scaled in the range [0, 1] using Min-Max values	Same scale for all features [0, 1]	-
Max-Abs	Linear	Features	Yes	Divides the data by the maximum absolute value	Same scale for all features [0 or -1, 1]	-
Standard	Linear	ar Features Yes Center the features using the mea standard deviation		Center the features using the mean and standard deviation	Features centered around the mean	Mean = 0, Standard deviation = 1
Robust	Linear	Features	No	Same principle as Standard but uses the median and interquartile range	Outliers not taken into account to center the features	-
Box-Cox	Non-linear	Features	No	Transforms the data to follow a Gaussian distribution	Low outlier weight	Strictly positive data
Yeo - Johnson	Non-linear	Features	No	Transforms the data to follow a Gaussian distribution	Low outlier weight	-
Quantile uniforme & normal	Non-linear	Features	No	The features follow a uniform or normal distribution	Same scale for all features + Low outlier weight	-

Context

Diagnosis approach

Standardization methods

Validation of approach

Why diagnosing FCs ?

From database to classification algorithm

Overview of methods

Metrics & Results

Classification metrics

	Real condition					
Detected condition	True	False				
True	<u>Тр</u>	<u>Fp</u>				
False	<u>Fn</u>	<u>Tn</u>				

Confusion matrix:

Accuracy score : ٠

• Accuracy =
$$\frac{Tp + Tn}{Tp + Tn + Fp + Fn}$$

Precision score : ٠

• Precision =
$$\frac{Tp}{Tp + Fp}$$

- Recall score :
 - Recall = $\frac{Tp}{Tp + Fn}$
- F1 score
 - $F1 = \frac{2 \times Recall \times Precision}{Recall + Precision}$

Results obtained

Database 1 : H₂/O₂

Tested conditions: nominal (1), flooding (1), drying (3), H₂ starvation (3), O₂ starvation (3)

Cross-validation : Leave One Out

		Normalizer			Linear scaler				Non Linear transformer		
	Raw data	Normalizer L2	Normalizer L1	Normalizer inf	Min-Max scaler	Max Absolute scaler	Standard scaler	Robust scaler	Yeo- Johnson	Normal Quantile	Uniform Quantile
Accuracy	0.852	0.784	0.784	0.750	0.943	0.852	0.920	0.977	0.966	0.943	0.955
F1 score	0.852	0.781	0.780	0.745	0.943	0.853	0.920	0.977	0.966	0.943	0.954
Recall score	0.852	0.784	0.784	0.750	0.943	0.852	0.920	0.977	0.966	0.943	0.955
Precision score	0.859	0.797	0.797	0.759	0.947	0.856	0.922	0.979	0.966	0.948	0.961
Number of features	4	8	7	7	5	5	5	6	6	6	5

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

(F) FC LAB

Results obtained

Database 2 : H₂/Air

Tested conditions : nominal (1), flooding (2), drying (2), H₂ starvation (2), Air starvation (2), carbon monoxide poisoning (3), sulphur poisoning (4)

carbon monoxide poisoning (5), sulprit

Cross-validation : Leave One Out

		Normalizer			Linear scaler				Non Linear transformer		
	Raw data	Normalizer L2	Normalizer L1	Normalizer inf	Min-Max scaler	Max Absolute scaler	Standard scaler	Robust scaler	Yeo- Johnson	Normal Quantile	Uniform Quantile
Accuracy	0.776	0.829	0.882	0.868	0.882	0.855	0.750	0.842	0.908	0.882	0.961
F1 score	0.774	0.832	0.883	0.864	0.879	0.851	0.753	0.842	0.908	0.883	0.961
Recall score	0.776	0.829	0.882	0.868	0.882	0.855	0.750	0.842	0.908	0.882	0.961
Precision score	0.816	0.855	0.886	0.866	0.891	0.861	0.763	0.866	0.909	0.891	0.961
Number of features	5	4	7	5	4	4	4	4	6	6	6

Analysis of the results

Impact of standardization

- Beneficial for any type of database
 - + 10 to 15%
- Normalizer not effective for EIS
- Linear method sufficient when data are similar
- Non-linear method works well in all types of configurations
- Uniform quantile transformation offers the best performance
 - Significance of strongly reduced outliers
 - Data at the same scale
 - (-) impact on the relationships between features
 - (+) easy comparison between features

	Score F1					
	H2 / O2	H2 / Air				
Raw data	0.852	0.774				
Normalizer L2	0.781	0.832				
Normalizer L1	0.780	0.883				
Normalizer inf	0.745	0.864				
Min-max	0.943	0.879				
Max absolute	0.853	0.851				
Standard	0.920	0.753				
Robust	0.977	0.842				
Yeo-Johnson	0.966	0.908				
Quantile normal	0.943	0.883				
Quantile uniform	0.954	0.961				

(^() FC LAB

Confusion matrixes

27

Detected Condition

H₂ / O₂ Database

Confusion between air and oxygen shortages

• Similar faults

Funded by the EU Fuel Cell and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) – H2020 Programme Grant Agreement Number 875047

RUBY

Confusion matrixes

H₂ / Air Database

Confusion between the two poisonings

Incipient and similar defects

Confusion between nominal / drying

- Incipient faults
- Lack of data

Detected Condition

By Conclusion

Synopsis:

- Main families of standardization
- Non-model-based diagnostic approach
- The impact of standardization on two different databases

Standardization has a strong influence on the results

- Increasing or reducing distortions
- Basic linear methods are limited
- Use of non-linear methods \rightarrow Increasing the robustness

Future prospects:

- Automatic detection of the number of clusters
- Increasing in the non-supervised portion

Thank you for your attention

Contact : damien.chanal@femto-st.fr

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 875047. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

